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The paper considers the generation of Boussinesq internal waves in the framework 
of the Green’s function method. For certain domains it is shown how to construct 
Green’s functions using the fundamental solution of the equation. The behaviour of 
the solution at  large times for an impulsively started monochromatic point source is 
studied, attention being focused on the growth rate of the oscillation amplitude on 
the characteristic surfaces of the steady-oscillation equation which are emitted from 
the point source. In addition a simple extended source is considered, for which a 
focusing singularity phenomenon is shown to take place. 

1. Introduction 
Problems concerning motions of stratified fluids have attracted the attention of 

researchers for a long time. Many publications are devoted to these problems, and it 
is impossible to give an exhaustive review of these works in one paper. Detailed 
bibliographies on this subject can be found in the books by Lighthill (1978), 
Miropol’skii (1981), and Gill (1982). When investigating linear harmonic waves, 
researchers usually restrict themselves to considering equations for steady oscil- 
lations, probably because such an approach still enables one to obtain many 
interesting results. Among these results, the most interesting are those which are 
related to the phenomenon described in the two-dimensional case as a ‘St. Andrew’s 
Cross’, consisting in the appearance of singularities in the amplitude of steady 
oscillations on certain lines or surfaces. Pictures obtained in the experiments of 
Mowbray & Rarity (1967) have become a classical illustration of this phenomenon. 
Mathematically the presence of singularities is explained by the well-known fact that 
solutions of hyperbolic equations can have singularities on their characteristic 
surfaces (see Hadamard 1932). Therefore if the steady oscillation equation is 
hyperbolic, we can expect the phenomenon mentioned. The peak of investigations 
concerning the presence of singularities in the steady oscillation amplitude was in the 
second half of the sixties and the beginning of the seventies. We mention here just 
the works of Wood (1965), Baines (1967), Larsen (1969) and Devanathan & 
Ramachandra Rao (1973). Among the further investigations based on the equations 
of steady oscillations and concerning the presence of singularities on characteristics, 
we point out those which are devoted to the case of variation with altitude of the 
buoyancy frequency (see Gordon, Klement & Stevenson 1975 and Liu, Nicolau & 
Stevenson 1990). 

In the works mentioned, however, far less attention was paid to how the 
singularities arise in the amplitude. In this connection the work of Hendershott 
(1969) should be mentioned, where oscillations of a rotating stratified fluid caused by 
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a pulsating sphere were investigated. It was shown in this work that on the 
characteristic cones tangent to the sphere the vertical component of the velocity field 
diverges as tieiut when t --f co, where CT is the frequency of pulsations. More precise 
investigations by Appleby & Crighton (1987) showed that at the apexes of these 
cones the divergence is as t eiut. They named this phenomenon a ‘focusing singularity ’. 

The present work aims to consider for the non-steady case the problem of the 
appearance of singularities in the amplitude. We proceed from the non-steady scalar 
equation for the vertical component of the velocity field: 

where N(x3) is the buoyancy frequency and f(x, t )  is a forcing. Equation (1) is known 
as the equation of internal gravity waves in the Boussinesq approximation. Its 
derivation can be found, for example, in the books by Gill (1982), Brekhovskikh & 
Goncharov (1982), and Whitham (1974). 

The paper is organized as follows. In the next section results on representing 
solutions of initial and boundary value problems for equation (1.1) through Green’s 
functions of relevant problems are presented. Formulae expressing Green’s functions 
through the fundamental solution of (1.1) for some domains are given here as well. 
In $3 these results are applied to non-ateady problems with monochromatic forcing. 
It is shown that, for an impulsively started monochromatic point source whose 
frequency r is less than the buoyancy frequency, on the characteristic surfaces 
emitted from the source the vertical component of the velocity field diverges as 
t; 

In addition, a problem with an extended source is considered, for which a 
for t +  co. 

phenomenon of the focusing singularity kind is shown to take place. 

2. Initial and boundary value problems 

satisfying the equation 
Let d ( x ,  t )  denote the function depending on variables (x, t )  and parameter h, and 

a 2  
,V2sh(x, t )  + P ( x 3 )  $2Eh(2 ,  t )  = a($, xs - h, t )  
at 

where x = ( X ~ , T ~ , X ~ )  are coordinates in a right-handed coordinate system, 2 = 
( x , , x 2 ) ,  V2 and V2 are defined in $1 ,  and satisfying the conditions 

@(z, t)lt < 0 = 0, 
k ( x , t ) + O  as Ixl-+oo for any fixed h and t .  

Everywhere here we assume that N2(x3) is smooth, bounded and positive. 
When the buoyancy frequency is constant, N(x3) = N = const, the fundamental 

solution has the form (see Dickinson 1969; Sekerzh-Zen’kovich 1979; Gabov & 
Sveshnikov 1986) 

sin (wt )  (P - w 2 ) - ~ ( w 2  - d2(2 ,  xg - h))-f dw (2.2 a) 
l 2 ,  z,-h) 
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or, equivalently, 

where H(t )  is the Heaviside step function, 121' = x; +xi, d(x,, x2, z3) = d(x) = flx31/lxl 
and J ,  is the Ressel function of order zero. 

For arbitrary stratified fluids E*(x, t )  has not been obtained in closed form. 
Taking advantage of the Green's formulae technique, one can obtain a 

representation of the solution to the Cauchy problem, i.e. of the function u ( x , t )  
satisfying equation (1.1) in the whole space R3 and the initial conditions ult=, = uo(x) 
and utltZ0 = ul(x) : 

+@@-& 63J)V52Uo(5)>- (2.3) 

Here and below the subscript 6 indicates that the relevant operators are composed 
of derivatives with respect to ti. 

In  the presence of boundaries one has to  use Green's functions instead of the 
fundamental solution. We consider equation (1.1) outside a volume V with a 
piecewise smooth boundary S and impose the Dirichlet condition on the boundary : 
uIs = y(x, t ) ,  the condition a t  infinity: IuJ + 0 as 1x1 + 00, and initial conditions: 
4 - 0  = u,(x), U t L O  = U I ( 4 .  

Let G(&', t I x) be the solution of the problem : 

( 2 . 4 ~ )  
a 2  

x, 6SR3\V, 

G(5, t lx)l&s = 0, G ( t >  t I 4 l t  < 0 = 0, 

s v ;  G(6, t 1 X) + f l ( 5 3 )  9; G(5, t 1 x) = a(6-2, t ) ,  

(2 .4b)  

G(6, t I x) + 0 as 161 + 00 under any fixed x and t .  

Using Green's theorems as above, one can derive the formula 

u(x ,  t )  = 1 f d7d3&45, t - 7 I x)f(E, 7) 
R3\V 0 

where ng denotes the outward normal from V' a t  5 and n, = ng-e3(e, .n) .  
We remark that even in the case of constant buoyancy frequency the Green's 

functions cannot be found explicitly for arbitrary domains. A procedure for 
constructing the Green's function in the horizontal layer H ,  < x3 < HI can be found 

3 FLM 248 
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in Anyutin & Borovikov (1986). This procedure leads to a series in the eigenfunctions 
of the following Sturm-Liouville problem : 

$ n ( K ,  Ho) = $ n ( K ,  HI)  = 0, 

which, however, cannot be solved explicitly for arbitrary N2(x3). The Green’s 
function for the half-space x, > 0 in the case of a linear buoyancy frequency has been 
constructed by Borovikov (1988). 

For domains having a certain shape and position it is possible to express G(6, t I x) 
through the fundamental solution of (1.1).  Let us present some domains and the 
corresponding Green’s functions, using cylindrical coordinates ( r ,  $, x,), where ( r ,  $) 
are polar coordinates on the plane Oxlx, with the pole at  the origin and $ counted 
anticlockwise from Ox,. 

(a)  V is a spatial angle of the form: 

v: ={xI$E(O,7C/n), r E ( O , o O ) ,  x,E(-oO; +a)}, n € N .  

Let (2 ,  x3)  E VE. Reflecting (2, x3) symmetrically with respect to the half-plane $ = 
n/n  we obtain a point x,). Then we transform (g1, x,) symmetrically with respect 
to the half-plane $ = %/n. We continue this procedure until we obtain the point 
(2zn-l, x,), which is symmetrical to the point (2.2n--2, x 3 )  with respect to the half-plane 
$ = (2%- l)z/n, and to the point ( 2 , ~ ~ )  with respect to the half-plane $ = 0. It is 
clear that 2( are functions of 2, but for brevity we omit the demonstration of this 
dependence. The function 

zn-1 

G t (  6,  t I X) = e’a(2 - <, E,, t )  + C ( - l)Ke’a(2K - <, t3, t )  (2.6a) 

is easily seen to be the Green’s function for equation (1 .1)  in l‘: subject to the 
Dirichlet condition on the boundary of V t .  

K-1 

(b )  V is the half-space: 
v, = {x I x, > O } .  

The buoyancy frequency in this case is not defined for x, < 0. In order to avoid 
dealing with non-smooth N2(x3) we assume in this subsection and in the next one, 
that its even extension (i.e. that which gives N2(x3)  = P( -x,) for negative x 3 )  is 
smooth. Inserting this extended N2(x3) into (2.1) we obtain the problem for the 
corresponding fundamental solution. The Green’s functions is expressed through this 
fundamental solution as follows : 

G&,t l z )  = ~ ~ ( 2 - - - , 6 ~ , t ) - ~ - ’ 3 ( ~ - - - , 5 ~ , t ) .  (2 .6b)  

(c) V is a fluid layer, and the buoyancy frequency is constant: 

V, = {xIO < X, < H), 1v2(x3) = N2 = const. > 0. 

Consider the sequence {hn(x3)} defined as follows : 

hlnW3 = - ( x 3 + 2 ( n - l ) H ) ,  

h&-, = - (2nH-x2,), 

h,,-, = ( - x3 + 2nH),  

hdn = (2nH+x3),  %E N 
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The sequence h,(x3) is easily seen to be none other than that of the vertical 
coordinates of points obtained by successively reflecting a point, whose vertical 
coordinate is x3€ (0, H ) ,  with respect to the planes x3 = 0 and x3 = H .  

Let us introduce the function 

m 

a,([, t I  x) = E(Iz-iI, 1x3-531, t )  + C ( -  l ) ”E( IO- i l ,  Ihn(x,)-531, t ) .  ( 2 . 6 ~ )  

It can be shown, with the help of the Dirichlet test for convergence of a series, that 
the series on the right-hand side of ( 2 . 6 ~ )  converges uniformly with respect to (6, t )  
E Q x [0,  r ]  for any compactum Q c V, and any T > 0. The function a,(& t I x) is easily 
seen to satisfy (2.4). Therefore G, (6, t 1 x) is the Green’s function for equation (1 . l )  in 
V, subject to the Dirichlet condition on the planes x3 = 0 and x3 = H .  

In exactly the same way we can construct the appropriate Green’s functions for 
the domain between two vertical parallel planes, i t  being possible in this case to do 
the derivation for a buoyancy frequency which varies with altitude. We do not dwell 
on this subject, but turn now to considering problems with monochromatic forcing. 

n=l  

3. Harmonic excitation 
In the present section we investigate the behaviour of solutions as t+ KI under 

monochromatic excitation. In  the main we restrict ourselves to considering 
monochromatic point sources, i.e. f(x, t) = 6(x-xo)  eiCt, r > 0, where the location xo 
is determined by the geometry of the relevant problem under consideration. Under 
zero initial and boundary conditions the solution assumes the form 

where G(x ,  T I xo) is the corresponding Green’s function (see (2.4)). In  the case of the 
Cauchy problem with zero initial conditions the solution has the form: 

u(x ,  t )  = eiu‘~e-iCT~’((e-(eo,:r3,i)d7; (3.2) 

where (io, h) = xo. Formulae (3.1) and (3.2) can be easily derived from the results of 
the previous section by taking advantage of the reciprocity property of the Green’s 
functions and the fundamental solution : 

G(x ,  t I xo) = C(x0,  t I x), @(O, x 3 ,  t )  = €“3((e, h, t ) .  

We remark that the zero initial and boundary conditions mean that we need not 
investigate the behaviour of the last two integrals in (2.5) a t  large times. However, 
it is clear that for uo(x),  ul(x) tending to zero sufficiently rapidly as 1x1 + 00,  and g(5,  
t) ‘acting ’ during only a finite time interval (and vanishing fast enough as 161 + co if 
the domain V is unbounded), these terms tend to zero as t + co a t  the same rate as 
the corresponding Green’s function (fundamental solution). 

Now we proceed to investigate the behaviour of (3.2) at large times. Below we take 
the frequency of oscillations to satisfy the inequality 0 < CT < N(h) ,  i.e. the 
corresponding steady oscillation equation to be hyperbolic. We shall investigate the 
behaviour of (3.2) as t -2  a a t  points of this equation’s characteristic surface 
emanating from the point x,, and begin with the case of  the constant buoyancy 
frequency. Note that for this case the t + 00 behaviour of (3.2) has already been 

3 2  
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thoroughly investigated at  points not belonging to the characteristic surface (see 
Gabov 6 Sveshnikov 1986, p. 103, and Voisin 1991). 

(a)  N(x3) = N = const. The characteristic surface is the cone : 

K"(x,) = 21 0- = d(x-xo) E N -  { Ix I x 3  - - XOI "I . 

The Laplace transform of (2.2) has the form 

&(x-x,,p) = -[4~)x-x01 ( ( p 2 + P )  (p2+d2(x-xO))~]-l, (3-3) 

where the branch of the square root is chosen so that it assumes positive values on 
the real axis of p and has the following cuts: 

( - 00 L f l ;  kirJ], ( - 00 &id(%- xo) ; id(x-x,)] 

Let x be such that d ( x - x , )  = w, i.e. x~K"(x , ) .  Taking advantage of the formula for 
the inverse Laplace transform and the convolution property of the Laplace transform 
we find that (3.2) takes the form: 

b f i m  

u(x, t )  = - ( &c2i lx - xol)-' ept( (p2 +iV) (p2 + u2))d ( p  - icr)-l dp, 
b-im 

b > 0, x ~ K " ( x , ) .  
Consider now the integral 

~ " ( t )  = -J'+imept [ ( ( p a + ~ 2 )  (pZ+a2))-+p--ia)-l 
b-ia, 

- (P - g2)4(2(r)-a e-ix14 ( p  - ia)"] dp, b > 0, 

where the branch ( p  - ia)-t assumes positive values on the ray (ia, icr + 00) and has the 
cut (iu- co, iu). Using Cauchy's theorem we can represent &"(t) as the integral over 
the cuts of the integrand and obtain the estimate : I&"(t)l < C(cr) t;. Taking advantage 
of the fact that the Laplace transform of ti is nf/2$ we get the formula 

where I&"(t)l < C(a) t-i and x ~ K " ( z ~ ) .  We shall comment on this result after case (b )  
of the present section, where the case of a buoyancy frequency varying with altitude 
is considered. 

( b )  N(x,) + const, 0 < a < infN(x,). 
Let 8(9-9,, x3, w )  denote the Fourier transform of eh(2-2, ,  x3, T )  with respect to 

T .  We can rewrite (3.2) as follows: 

It is clear that, as t +  co, the integral on the right tends to Eh(2-20,x3,u) ,  which is 
a fundamental solution of the steady oscillation equation, i.e. 

( - a2V2 +iV(x,) V 2 )  P ( 2  - 20, x3, a) = S(x-x,). 

gh(2-90,2,, a) = -(4x)-1(N2(x3)-w2)-qP(h)-a2)-w(a, x , x o ) ,  

(3.6) 

Using work by Hadamard (1932), we extract from k ( 2 - 2 , , x 3 ,  u) a function 
containing its all main singularities and having the form 

(3.7) 
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where r is the square of the geodesic distance between the points x and xo: 

T(a,x,x,) = $"(a,x3,h)-r21d-20,12, 

$ ( r , x 3 , h )  = [3(P(z)-a2):dz, 

and the argument of the complex number fi when r < 0 is equal to an. Function (3.7) 
is the first term of the Hadamard expansion of Eh(2 -?,, x3, a) in powers of r, the next 
term being proportional to fi. It can be shown that fl(2-20, x3, r) coincides with 
P(2-20, x3, a) when N(x3)  is constant. 

Let 
def 

x€K"(xo )  = {x I T(C7, x, xo) = 0, x * x,} 
(this definition of K"(x,) is easily seen to include the one given for case (a)  above. 
Changing the order of integration in (6.5) and integrating over T gives 

eiot +co i(w-u)t - 1 
Eh(i-?, ,  x3, W )  dw, XEK"(X,).  

2ni s e  -m w - c  
u(x,  t) = - 

Using (3.6) one can show that Eh(2-?o, x3, w )  vanishes as w-' as JwJ -+ CO for any fixed 
x, xo. Taking advantage of this fact and the properties of gh(2-20, x3, CT) mentioned 
above we can write 

where IR(x, xo, a, t)l < C(x ,  xo, ~ 7 )  and 6 is sufficiently small. From (3.7), (3.8) one can 
derive the formula 

where x ~ K " ( x , ) ,  

x ( x ,  xo, a) = ( P ( x 3 )  - 8): (N2(h) - C 7 2 p  

and CRl@, xo, 01 < C(x ,  xo, 4. 
The principal term of (3.9) looks like the principal term of (3.4) and it is easily 
checked that they become the same when the buoyancy frequency is constant. 

Formulae (3.4) and (3.9) show that the solution of the Cauchy problem for a 
monochromatic point source, whose frequency is less than the buoyancy frequency, 
diverges as tieiot when t + co on the cone K"(x,), which is in fact the steady oscillation 
equation's characteristic surface emanating from the point source. The oscillations 
with growing amplitude on the cone K'(xo) have a phase shift of in with respect to 
the phase of the point source, while the corresponding phase shifts of oscillations a t  
points inside and outside the cone can be shown to equal 7c and @ respectively. The 
presence of boundaries complicates the manifold on which the growth of the 
amplitude takes place. I n  the examples (a)-@) of 52 each of these manifolds is 
composed as is easily seen from the corresponding Green's function a([, t I x), of the 
intersection of the relevant V with the union of K'(x,), K'(xo,) where xoi denote the 
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relevant reflections of xo described in (a)-(c) of $2. The oscillations' phase pattern is 
also complicated by the presence of boundaries, but the phase shift of the oscillations 
with growing amplitude on the manifolds equals either (-an) or in. 

Tn the work by Borovikov (1990) a hypothesis about the asymptotic behaviour of 
@($--so, x,, t )  for t + 00 is proposed. An application of this hypothesis to our subject 
gives a result analogous to that obtained above. Indeed, according to Borovikov's 
paper the principal term ph($-2,, x,, t )  of the asymptotic expansion at a point x: is 
formed from contributions from the rays passing through x. Let x be a point on a ray 
with w = g (i.e. x ~ K " ( x , ) ) .  The contribution of the ray to p'(&-$,, x3, t)  has the form 
- A  (x, x,) t-f sin (d + in). If x does not lie on a line a t  which rays turn, then 

ph($ - $,, x,, t )  = - A  (2, 5,) t-f sin (crt +in) + A J X ,  xo) t-t sin (w, t + $,I, 
K 

where the sum is taken over other rays passing through x and having w = w, =I= r, the 
residual 

B(x ,  x,, t )  = € h ( 2 - 2 , ,  x 3 ,  t )  -p"$-i?,, x,, t )  

IB(x, xo, t)l < G(x,  xo) t-t. 
satisfying the estimate 

Simple calculations and estimates show that (3.2) can be represented as follows : 

u(x,  t )  = A (x, xo) ei(gt+3n/4) t' + q(x, xo, t ) ,  (3.10) 

where I&, x,, t)l < 5,).  
Formula (3.10) is easily seen to be in agreement with (3.9). 
Borovikov's method also enables one to investigate the phenomenon under 

consideration in the presence of a critical level, at  whichN(x,) = g. However, it is not 
applicable, or needs more accurate treatment, when an infinite number of rays passes 
through x. (The author thanks a referee, who drew the author's attention to this 
fact.) 

One can also consider the forcing 

f ( x ,  t )  = S(x-x,) $(t)eiUt, 

where $( t )  is continuous and $ ( t )  = t-= starting from the moment T > 0, for some 
a~ (0,l) .  Suppose that N = const and c r ~  (0,N). Representing the solution corre- 
sponding to this forcing through the inverse Laplace transform of the convolution 
in time of E( (2 - so(, (x3  - h( , t )  and $(t)  eiut and using the inverse Laplace transform 
of ( p  - io)"-i, one can find that the principal term of the asymptotic expansion of 
u(x, t )  on the cone K"(x,) is of the form 

,i(ut+3r/4) 

where 

a~ (0, I ) ,  and r ( z )  is Euler's gamma function. 
We remark that the next order terms are O(t-i) and they must be taken into 

account when a 1. 
Finally, let us consider a model of an extended monochromatic source, which 

illustrates a phenomenon of the focusing singularities kind. This phenomenon 
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consists in the fact that at the apexes of cones of the limiting amplitude's 
singularities the divergence in time occurs at a 'higher' rate than at  other points of 
the cones. As a result the character of the singularity of the limiting amplitude at  the 
apexes of the cones differs from that at  other points of the cones (see Appleby & 
Crighton 1987). We consider the Cauchy problem for equation (1 .1)  with zero initial 
conditions and the following forcing : 

(3.11) 

where 

C, = { E  = (i, E3) IE30, = R} and dl, is the element of length of C, a t  [EC,. 

Function (3.1 1) simulates a ring-shped monochromatic source. 
Let N(x,) = N = const and g~ (0,N). The solution of the problem has the form 

(3.12) 

where E is given by (2 .2 ) .  

f R a ( P  - crz)-i), which are the apexes of characteristic cones containing C, : 
Let us now observe the behaviour of the solution as t+ coat points O* = ( O , O ,  

u(O*, t )  = eiut 1 e-iu7E(B,Ra(P - cr2)-f, 7 )  d7. 

By virtue of (3.4) we have 

u(O*, t )  = - 1 ti + Q'(t)) , 

where I&"(t)l < C ( g )  t-f. 
Therefore the ring-shaped source creates a velocity field, whose vertical component 

at  points O* diverges as tieiut when t- t  00. On the other hand, slightly more 
cumbersome calculations (contained in an Appendix-/-) show that at other points of 
the cones K"(O*), u(x , t )  diverges as eibtlnt. Thus, at  points 0' the focusing of 
singularities takes place. 

For the variable buoyancy frequency N(x3) of case ( b )  of $2, the focusing of 
singularities still takes place, but at  

6* = (O,O,u'(R)), 

where a*(R) are solutions of the equations 

R = ( P ( z )  - a 2 ) k 1  dz, 

R = c- (P(z) - g 2 ) k 1  dz. 

The principal term of the asymptotic expansion of u(z, t )  at 6* is given by (3.9) with 
x3 = u*, h = 0 and 12--2,,1= R .  

t Available on request from the author or the Editorial Office. 
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4. Conclusions 
The problem of the appearance of singularities in the amplitude of oscillations in 

stratified fluids can be investigated in the time-dependent formulation proceeding 
from equation (1.1). The structure of the equation enables us to express its Green's 
functions for certain domains through its fundamental solution. This reduces the 
problem in the case of a monochromatic point source to investigating integrals of the 
form (3.2). I n  the absence of critical levels, the t - t  GO behaviour of the vertical 
component of the velocity field for an impulsively started monochromatic point 
source on K"(z,) is given by (3.9). The approach used also enables us to  observe 
phenomena like focusing singularities by considering a monochromatic ring-shaped 
source (3.10) or any of its parts of finite length. 

The author is grateful to CIRM (Centro Internazionale per la Ricerca Matematica 
of Trento), especially to Professor H. BeiriXo da Veiga, for providing the opportunity 
to attend the conference 'Partial Differential Equations and Continuum Mechanichs ' 
(Trento, June 3-7, 1991). 
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